Richmond Community High School Greenhouse

Sherin Ashraf-Hanna, Ashley Bull, Mikaela Domingo, Jackie Keogh, Sara Pique, and Jasmine Weaver

Introduction

- Primary Client: Richmond Community High School (RCHS)
- A college preparatory high school with the mission of providing gifted students from disadvantaged backgrounds with opportunities to succeed.

- Secondary Client: Highland Support Project (HSP)
- A nonprofit organization dedicated to advocating for communities that have experienced high levels of historical trauma.

Project Overview

- Improve raised garden beds
- Add spirulina shelving to existing greenhouse
- Design a rainwater collection and/or irrigation system
- Design an shaded pavilion

Existing Conditions

Constraints and Considerations

Constraints

- Zoning
- Land use
- Lot coverage: < 35%
- Max. Building height: < 35ft
- Setbacks: 25 ft front, 5 ft back and sides
- Minimum Garden bed dimensions (4' wide) and spacing
- Cost: non-profit organization; most of the funding will come from grants or donations

Zoning Map of Richmond, VA.

Considerations

- Community Engagement: Bring community together through the community garden and local farmers market.
- Culture: Honor the indigenous groups in the area by ensuring that their culture is reflected in our designs.
- Materials: Some of these designs will be replicated using common materials that can be found in areas such as Arizona and Guatemala where resources are scarce.
- Primary vs Accessory Use: Ensure each stage of the process abides by the definitions outlines in the City of Richmond ordinances.

Earth Cross representing cardinal directions in Indigenous culture.

Local farmers market that occurs at the project site.

Garden Box Design Alternatives

Garden Box Design Alternative \#1

Boxes aligned with existing boxes along west fence

- Minimum height: $1^{\prime}-0^{\prime \prime}$
- Minimum spacing: $4^{\prime}-0^{\prime \prime}$
- Recommended width: $4^{\prime}-0^{\prime \prime}$
- ~100'-0" length
- Wood: ~\$500/bed
- Cinder blocks: $\sim 750 /$ bed

Garden Box Design Alternative \#2

Boxes aligned with west side of greenhouse, grass between beds

- Minimum height: $1^{\prime}-0^{\prime \prime}$
- Minimum spacing: $4^{\prime}-0^{\prime \prime}$
- Recommended width: $4^{\prime}-0^{\prime \prime}$
- $\sim 62^{\prime}-0^{\prime \prime}$ length
- Wood: ~\$350/bed
- Cinder blocks: $\sim 500 /$ bed

Garden Box Design Alternative \#3

Boxes aligned with west side of greenhouse, gravel between beds

- Minimum height: $1^{\prime}-0^{\prime \prime}$
- Recommended width: $4^{\prime}-0^{\prime \prime}$
- Minimum spacing: $3^{\prime}-0^{\prime \prime}$
- ~62-0" length
- Gravel: $\sim \$ 100 /$ space
- Wood: ~\$350/bed
- Cinder blocks: $\sim \$ 500 /$ bed

Garden Box Design Add-On
 Narrow boxes along west fence

- Minimum height: $1^{\prime}-0^{\prime \prime}$
- Width: $1^{\prime}-2^{\prime}$
- $\sim 100^{\prime}-0^{\prime \prime}$ length
- Wood: ~\$450/bed
- Cinder blocks: ~\$750/bed

Spirulina Shelving Design Alternatives

What is Spirulina?

- Algae, cyanobacteria, \& biofuel high in macronutrients
- Significant supplement against scarcity of food, crops, resources, etc.
- Malnutrition
- Variety cultivation techniques \& each technique provides different benefits
- Replication in developing areas

Source: Spirulina - From growth to nutritional product: A review

Spirulina Shelving Design Alternatives

Alternative \#1a: Indoor wooden shelving with concrete slab.

Alternative \#1b: Indoor metal shelving with concrete slab.

Spirulina Shelving Design Alternatives

Alternative \#2a: Outdoor wooden shelving

Alternative \#2b: Outdoor metal shelving

Rainwater Collection Design Alternatives

Rainwater Collection Design Alternative \#1

Gutter collection with drip irrigation system on east side and rain barrels on west side

3D Model of proposed east side.
3D Model of proposed west side.

Rainwater Collection Design Alternative \#2

Gutter collection with rain barrels on both sides

3D Model of proposed rainwater collection system.

Shaded Structure Design Alternatives

Shaded Structure Design Alternative \#1 Pavilion with Cultural Design Factors

3D model of the proposed pavilion from the east side

Aerial view of site with pavilion location outlined in red

Shaded Structure Design Alternative \#2 Traditional Pavilion

3D model of the proposed pavilion from the west side

Possible option for a prefabricated pavilion

Shaded Structure Design Alternative \#3 Shaded Seating Area

3D model of the proposed shaded area

Recommendations

Recommendation \#1

- Irrigation system
- Gravel between beds.
- Materials (wood, Cinder blocks)
- Cost effective
- Long term efficiency
- Cost \$6,667

Alternative 1 Garden Box Design (Gravel)						
No.	Materials	Quantity	Unit	Cost/Unit	Total	
1	Cinder blocks	1017	sf	3.4563	$\$ 3,515.06$	
2	Corner Brackets	5	ea.	24.99	$\$ 124.95$	
3	Gutter Downspouts	16	ea.	12.98	$\$ 207.68$	
4	Downspouts Elbow	32	ea.	3.38	$\$ 108.16$	
5	Gravel (colored)	744	sf	1.5375	$\$ 1,143.90$	
6	Driplrigation Tube	240	LF	1.2	$\$ 288.00$	
7	Rain Barrels	8	ea.	159.99	$\$ 1,279.92$	
				Total	$\mathbf{\$ 6 , 6 6 7 . 6 7}$	

Table 1: Alternative \#3 cost estimate Garden bed with gravel and irrigation water system cost estimate.

Recommendation \#2

- Outdoor activities (Farmer's market, and classrooms)
- Cultural designed
- Structure element (concrete)
- Safety
- Aesthetically pleasant
- Gather the community
- Less maintenance

Pavilion Structure with Cultural Design Factors.

Tradational Pavilion					
No.	Materials	Quantity	Unit	Cost/Unit	Total
1	Pavilion	112.0	sf	51.66	$\$ 5,785.92$
2	Wooden Bench	6	ea.	176.95	1061.7
3	Shrubs	4.0	ea.	$\$ 103.00$	$\$ 412.00$
4				Total	$\$ 7,259.62$

Table 2: Cost estimate for a standard pavilion

Recommendation \#3

- Material
- Moisture resistant
- Durable
- Wheels (indoor/ outdoor)
- Long term growth
- Temperature monitoring

Metal Spirulina Shelving station

Spirulina Shelving						
No.	Materials	Quantity	Unit	Cost/Unit	Total	
1	50 Gallon Tank	1	ea.	395.86	$\$ 395.86$	
2	Metal Table Incl. Wheels	1	ea.	189.99	$\$ 189.99$	
3				Total	$\$ 585.85$	

Table 3 : Cost estimate for spirulina shelving

Recommendations

Recomandation Estimated Cost	
Garden beds Inc. Rainwater Harvesting System	$\$ 6,667.67$
Spirulina Shelving	$\$ 585.85$
Tradational Pavilion	$\$ 7,259.62$
Total Cost	$\mathbf{\$ 1 4 , 5 1 3 . 1 4}$

- Rough Estimate (+-50\%)
- Varies materials
- Don't include labor cost

Or maintenance cost

- Assuming materials are bought.
- Total $=\$ 14,513.14$

Thank you! Any questions?

